Approximation of an elliptic boundary value problem with unilateral constraints

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of an elliptic boundary value problem with unilateral constraints

— In this paper we show how a method of J. Nitsche for the approximation of elliptic boundary value problems can be applied to obtain an approximation scheme and « optimal » error estimate for the approximation of a certain variational inequality.

متن کامل

Multigrid Solution of an Elliptic Boundary-Value Problem with Integral Constraints

An efficient multigrid approach for solving a discretized elliptic equation whose boundary values are determined in part by integral relations is developed, analyzed, and tested. The algorithm is motivated by a problem that is solved during integration of the 3D quasigeostrophic (QG) equations, which model large-scale rotating stratified flows, where the integral constraints represent mass cons...

متن کامل

On a Nonlinear Elliptic Boundary Value Problem

Consider a bounded domain G C R (_N>1) with smooth boundary T . Let L be a uniformly elliptic linear differential operator. Let y and ß be two maximal monotone mappings in R. We prove that, when y ? 2 satisfies a certain growth condition, given f £ L (G ) there is u € H (G) such that Lu + y(u) 3 f a.e. on G, and -du/d v e ß(u\ ) a.e. on T, where du/civ is the conormal derivative associated with...

متن کامل

An Inverse Boundary-value Problem for Semilinear Elliptic Equations

We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.

متن کامل

On an Eighth Order Overdetermined Elliptic Boundary Value Problem

We consider the overdetermined boundary value problem for the 4-harmonic operator, Δ4 = Δ(Δ3) , and show that if the solution of the problem exists, then the domain must be an open N -ball (N 2) . As a consequence of overdetermined problems mean value results are obtained for harmonic, biharmonic, triharmonic and 4-harmonic functions. Mathematics subject classification (2010): 35J25, 35P15, 35B50.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique

سال: 1975

ISSN: 0397-9342

DOI: 10.1051/m2an/197509r200051